Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Maunaloa—the largest active volcano on Earth—erupted in 2022 after its longest known repose period (~38 years) and two decades of volcanic unrest. This eruptive hiatus at Maunaloa encompasses most of the ~35-year-long Puʻuʻōʻō eruption of neighboring Kīlauea, which ended in 2018 with a collapse of the summit caldera and an unusually voluminous (~1 km3) rift eruption. A long-term pattern of such anticorrelated eruptive behavior suggests that a magmatic connection exists between these volcanoes within the asthenospheric mantle source and melting region, the lithospheric mantle, and/or the volcanic edifice. The exact nature of this connection is enigmatic. In the past, the distinct compositions of lavas from Kīlauea and Maunaloa were thought to require completely separate magma pathways from the mantle source of each volcano to the surface. Here, we use a nearly 200-yr record of lava chemistry from both volcanoes to demonstrate that melt from a shared mantle source within the Hawaiian plume may be transported alternately to Kīlauea or Maunaloa on a timescale of decades. This process led to a correlated temporal variation in 206Pb/204Pb and 87Sr/86Sr at these volcanoes since the early 19th century with each becoming more active when it received melt from the shared source. Ratios of highly over moderately incompatible trace elements (e.g. Nb/Y) at Kīlauea reached a minimum from ~2000 to 2010, which coincides with an increase in seismicity and inflation at the summit of Maunaloa. Thereafter, a reversal in Nb/Y at Kīlauea signals a decline in the degree of mantle partial melting at this volcano and suggests that melt from the shared source is now being diverted from Kīlauea to Maunaloa for the first time since the early to mid-20th century. These observations link a mantle-related shift in melt generation and transport at Kīlauea to the awakening of Maunaloa in 2002 and its eruption in 2022. Monitoring of lava chemistry is a potential tool that may be used to forecast the behavior (e.g. eruption rate and frequency) of these adjacent volcanoes on a timescale of decades. A future increase in eruptive activity at Maunaloa is likely if the temporal increase in Nb/Y continues at Kīlauea.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Temporal variations in lava chemistry at active submarine volcanoes are difficult to decipher due to the challenges of dating their eruptions. Here, we use high-precision measurements of 226Ra-230Th disequilibria in basalts from Kama‘ehuakanaloa (formerly Lō‘ihi) to estimate model ages for recent eruptions of this submarine Hawaiian pre-shield volcano. The ages range from ca. 0 to 2300 yr (excluding two much older samples) with at least five eruptions in the past ∼150 yr. Two snapshots of the magmatic evolution of Kama‘ehuakanaloa (or “Kama‘ehu”) are revealed. First, a long-term transition from alkalic to tholeiitic volcanism was nearly complete by ca. 2 ka. Second, a systematic short-term fluctuation in ratios of incompatible elements (e.g., Th/Yb) for summit lavas occurred on a time scale of ∼1200 yr. This is much longer than the ∼200-yr-long historical cycle in lava chemistry at the neighboring subaerial volcano, Kīlauea. The slower pace of the variation in lava chemistry at Kama‘ehu is most likely controlled by sluggish mantle upwelling on the margin of the Hawaiian plume.more » « less
An official website of the United States government
